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Abstract Multimodal graphs, which integrate diverse multimodal features and relations, are ubiquitous in real-world
applications. However, existing multimodal graph learning methods are typically trained from scratch for specific graph
data and tasks, failing to generalize across various multimodal graph data and tasks. To bridge this gap, we explore the
potential of multimodal graph large language models (MG-LLM) to unify and generalize across diverse multimodal graph
data and tasks. We propose a unified framework of multimodal graph data, tasks, and models, discovering the inherent multi-
granularity and multi-scale characteristics in multimodal graphs. Specifically, we present five key desired characteristics for
MG-LLM: (1) unified space for multimodal structures and attributes, (2) capability of handling diverse multimodal graph
tasks, (3) multimodal graph in-context learning, (4) multimodal graph interaction with natural language, and (5) multimodal
graph reasoning. We then elaborate on the key challenges, review existing literature, and highlight promising future research
directions towards realizing these ambitious characteristics. Finally, we summarize existing multimodal graph datasets
pertinent for model training. We believe this paper can contribute to the ongoing advancement of the research towards
MG-LLM for generalization across multimodal graph data and tasks.
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1 Introduction

Multimodal graphs, which integrate features from diverse modalities such as text, image, audio, and
video, as well as capture the complex intra-model and inter-modal relations, are becoming increasingly
ubiquitous in real-world applications. From social networks [1] and e-commerce [2] platforms to scientific
discovery in biomedicine and materials science [3,4], these complex data structures offer a richer, more
holistic representation of interconnected entities than traditional unimodal graphs, which unlock more
opportunities for advanced analytics, reasoning, and generation capabilities over multimodal information.

However, multimodal graph learning currently faces a significant issue: existing methods are predom-
inantly designed for specific tasks on particular types of graphs. This specialization often limits their
applicability, preventing them from generalizing effectively across the vast diversity of multimodal graph
data and tasks encountered in practice. This lack of universality necessitates constant redesign and
retraining for new scenarios, hindering the development of truly versatile and scalable solutions.

To bridge this gap, we explore the potential of multimodal graph large language models (MG-LLM).
Inspired by the remarkable success of large language models (LLMs) in unifying diverse natural language
tasks, we propose that MG-LLM can serve as a powerful paradigm to unify and generalize across the
complex landscape of multimodal graph data and tasks. Our exploration begins by establishing a unified
framework for multimodal graph data, tasks, and models, which uncovers the inherent characteristics of
multimodal graphs, i.e., multi-granularity and multi-scale.

Specifically, we highlight that multimodal graphs inherently exhibit multi-granularity, organizing infor-
mation from fine-grained features like pixels and words to coarse-grained concepts such as entire images
or documents, along with diverse structural complexities. This leads to multi-scale characteristics in
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multimodal graph tasks, where inputs and outputs can vary dramatically in their scope, from individual
nodes to entire graph structures.

Building upon this foundational understanding, we articulate five key desired characteristics towards
MG-LLM.

e Unified space for multimodal structures and attributes. The ability to align and represent diverse
multimodal features and relations within a single unified embedding space, capable of handling highly
irregular and continuous information.

e Ability of handling diverse multimodal graph tasks. The capacity to frame and solve all multimodal
graph tasks, from traditional discriminative problems like node classification to emerging generative tasks
such as multimodal content generation, under a unified generative modeling paradigm.

e Multimodal graph in-context learning. The capability of performing novel tasks by leveraging a
limited number of multimodal graph examples provided directly within the prompt, without requiring
explicit model fine-tuning.

e Multimodal graph interaction with natural language. The possibility of enabling users to query,
edit, generate, and reason about complex multimodal graph-structured knowledge using intuitive natural
language, bridging the gap between human language and structured data.

e Multimodal graph reasoning. The proficiency in performing complex multi-hop, cross-modal rea-
soning, including analogical inference, by seamlessly combining information from various modalities and
relational structures.

While the vision of MG-LLMis ambitious, realizing these characteristics presents significant challenges,
ranging from developing unified multimodal graph vocabularies and tokenization schemes to multimodal
graph architectures capable of large-scale pretraining. This paper delves into these key challenges, reviews
existing research that moves towards this paradigm, and outlines promising future research directions to
accelerate the development of MG-LLM for generalizing across diverse multimodal graph data and tasks.
Finally, we summarize existing multimodal graph datasets that could be useful for the training and
evaluation of such models. This work aims to foster progress towards a new era of multimodal graph
intelligence.

Our main contributions are summarized as follows.

e We explore the potential of MG-LLM to unify and generalize across diverse multimodal graph data
and tasks, aiming for universal generalization across diverse multimodal graph data and tasks. We
systematically discuss the potential of MG-LLM, for the first time, to the best of our knowledge.

e We present a unified framework for understanding multimodal graph data, tasks, and models, high-
lighting their inherent multi-granularity and multi-scale characteristics for designing MG-LLM.

e We propose five essential characteristics that MG-LLM should possess, coupled with detailed discus-
sions of challenges and future directions, thereby setting a clear research roadmap. We also summarize
existing multimodal graph datasets and tasks for developing MG-LLM.

The domain of multimodal learning on graphs is rapidly advancing. We distinguish our work from
several related lines of research. (1) Compared to surveys on multimodal graph learning [5, 6], which
primarily catalog existing techniques, our work introduces a novel conceptual framework and a forward-
looking vision for a unified MG-LLM. (2) Unlike existing GraphLLMs [7, 8], which mainly focus on
adapting unimodal graph data for LLMs, we address the more complex challenge of natively handling
graphs with rich multimodal attributes. (3) Distinct from general-purpose Omni-MLLMs [9], we argue
for a specialized paradigm that deeply integrates graph-structured reasoning rather than treating graphs
as just another input modality. By identifying the inherent characteristics of multimodal graphs and the
desired characteristics for MG-LLM, we chart a new research roadmap towards developing multimodal
graph large language models, thereby complementing surveys of the existing state-of-the-art by looking
towards a next-generation paradigm.

2 Towards a unified view of multimodal graph data, task, and model

In this section, we introduce a unified framework of multimodal graph data, task, and model, and remark
on the inherent characteristics in multimodal graphs, serving as a foundation to discuss the desired
characteristics of MG-LLM. The overall framework is shown in Figure 1.
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Figure 1 (Color online) Unified view of multimodal graph data, tasks, and models towards MG-LLM.

2.1 Unified formulation of multimodal graph data

In this section, we define multimodal graphs, extending standard graphs with diverse node and edge
modalities. Then we outline three decomposable types (feature-, node-, graph-level), and their versatility
in representing various data forms, from single instances to full datasets. Moreover, we give remarks on
the challenges of indecomposability and multi-granularity for building effective MG-LLM.

Graph. A graph G = (V, &) consists of a finite set of vertices V = {v1,va,...,v,} and a set of edges
E CV x V, each edge being an ordered pair of vertices denoting a directed relation between them.

Multimodal graph. A modality is a distinct type or source of information associated with nodes or
edges. Let M = {1,2,..., M} denote the set of all modalities. We define a mapping set F = {F,,}M_, for
all M modalities. For each m € M, the mapping F,,, maps from the modality-specific node feature space
V to a shared representation space X, such that F,, : V — &X. The space & serves as a unified embedding
space for all modalities. Similarly, we define a mapping F,, from the modality-specific edge feature space
& to the shared representation space X, such that F,, : &€ — X. For simplicity, we reuse F,, as the
modality-m map for both nodes and edges. We likewise leave out multimodal edges in the formulation,
even though extending them would be straightforward. The features in different modalities could be texts,
images, audios, and videos. A multimodal graph can be defined by the quadruple G = (V, &, F, M). To
make the formulation more concrete, a running example is shown in Figure 2.

Special cases of decomposable multimodal graphs. By instantiation of the modality set and
feature mapping, we could obtain several classic types of multimodal graphs which are ubiquitous in
real-world applications [6]. These types of multimodal graphs share the same assumption that they can
be decomposed by modality from different perspectives, i.e., feature, node, and graph.

e Feature-level multimodal graph, where the features of nodes or edges come from different modalities,
ie, g = U%Zl Gm = Uﬁle(v,s,fm, {m}), where m representing one modality in M modalities. The
feature of node v could be represented as x(v) = @%:1 Fm(v). For example, on an e-commerce product
graph [10], each node has the feature of product title and image, i.e., x(v) = @ (Frext(V), Fimage (V).

e Node-level multimodal graph, where the nodes or edges come from different modalities, while each
node or edge has unimodal features, i.e., G = U%Zl G = Unj\{zl(Vm, &, Fm,{m}), where m representing
one modality in M modalities, and V; (| V; = 0. For example, on a multimodal knowledge base [11], each
node might be either an image or a textual description.
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Figure 2 (Color online) An illustrative diagram and a running example of a multimodal graph, taking a small product graph
with text and image nodes as an example.

e Graph-level multimodal graph, where the graphs come from different modalities, while each graph
has unimodal features, i.e., G = U%Zl Gm = Un]\le(vm, Em, Xm, {m}), where m representing one modality
in M modalities, and &; () &; = (). For example, on a multimodal question answering graph [12], we may

have a graph with images, a graph with texts, etc.

Remark 1 (Indecomposable characteristics). Although practitioners may model their data with the
aforementioned decomposable multimodal graphs for convenience, most multimodal graphs in real-world
scenarios, with nodes and edges having features from various modalities, may not be easily decomposable
to several uni-modal subgraphs. For instance, in a multimodal graph where the text node says ‘The
Transformer was incredible!’, the image node shows Optimus Prime (a central robot character from the
Transformers movie series), and the knowledge node links to the movie Transformers, only joint reasoning
over all three nodes can resolve the ambiguity and correctly interpret ‘Transformer’ as a film character
rather than a neural network architecture. Due to the indecomposable characteristics, established mul-
timodal fusion techniques in other multimodal fields [13] may fail to flexibly solve multimodal graph
problems, calling for the need of native modeling of multimodal graph data in multimodal graph large
language models.

Special cases of multimodal graph instances. The versatility of multimodal graphs allows them
to represent not only complex inter-modal relationships but also instances or datasets composed of single
or multiple modalities as special cases, e.g., instances of texts, images, audios, videos, etc, or pairs of
image-captions, text-audios, etc. Here are examples of representing single-modal instances.

e A text sequence can be represented by a multimodal graph with a single text-attributed node, i.e.,
G = ={v},E=0,{Fiext}, {text}), where Fiexs is the text feature mapping function.

e A text sequence, more granularly, can be represented by a multimodal graph where each word
is a node and sequential or semantic connections form edges, i.e., G = (V,&,{Fyord}, {word}), where
V=A{v,...,o} &= {(vi,vi41) Z-L;ll, L is the length of the text sequence, and Fyorq is the word feature
mapping function.

e An image can be represented as a multimodal graph where pixels are nodes and their grid-like inter-
connections form edges, i.e., an H X W image can be G = (V = {Uij}f{:’m:pggrid,{fpixcl}, {pixel}),
where £giq represents grid-like inter-connections, and Fpixel is the pixel feature mapping function.

Beyond individual instances, multimodal graphs can efficiently represent entire datasets. Here are
some examples.

e A batch of images can be represented as a multimodal graph with several image-attributed nodes
without any edges, ie., G = (V= {v1,...,vx},€ =0, {Fimage}, {image}), where Fimage is the image
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feature mapping function, and K is the number of images.

e An image-captioning dataset can be represented as a multimodal graph where edges connect image-
attributed nodes to their corresponding text-attributed caption nodes, i.e., for K image-caption pairs, G =
(Vimage U Viext, gimage—texta {]:image: ]:text}a {imagea teXt})? where Vimage = {Uh cee 7UK} are image nodes,
Viext = {u1,...,ux} are caption nodes, Emage-text = {(Vk, ur) | 1 < k < K} are edges connecting images
to their captions, and Fimage and Fiexy are the image and text feature mapping functions, respectively.

This ability to abstract various data forms into a unified graph structure underscores the expressive
power of multimodal graphs.

Remark 2 (Multi-granularity characteristics). Multimodal graphs inherently possess the ability to
organize data with multi-granularity across modalities, features, and structures. However, this capability
is a double-edged sword. While they can represent vast amounts of information, they also introduce
significant challenges for models to process them flexibly. Unlike other domains that feature units of
roughly uniform granularity, such as word tokens in natural language processing (NLP) or image pixels
in computer vision (CV), multimodal graphs often contain units ranging from fine-grained features (e.g.,
pixels, words) to coarse-grained concepts (e.g., full images, entire documents). To build an effective MG-
LLM capable of flexibly handling information at diverse granularities on multimodal graphs, it may be
necessary to design a unified multimodal graph vocabulary and tokenizer for learning multimodal graph
representations in a shared space.

2.2 Generative modeling of multimodal graph tasks

In this section, we can frame, through generative modeling, that all multimodal graph tasks are multi-
modal graph generation. Due to the inherent multi-granularity characteristics of multimodal graphs, we
can unify several classical discriminative tasks and emerging generative tasks under a single generative
perspective, which can bring advantages of unified task forms, types, and interfaces. Suppose MG-LLM
learns a conditional probability distribution to generate an output multimodal graph G, given an input
Gin. Formally, the objective is to model

P(gout|gin;®)7 (1)

where © are the MG-LLM’s parameters. Various multimodal graph tasks can be redefined generatively.

e Multimodal node classification (NC) aims to take a multimodal ego-graph centered around a
target node as input, and generate a multimodal graph representing the predicted class, i.e., P(Gelass | Gu),
where G, = (V,, €y, Fu, M,,) is a subgraph centered at node v € V and Gelass = ({v}, 0, {Fim}, {m}) is an
output graph where F,,,(v) encodes the class label (e.g., text or image).

e Multimodal link prediction (LP) takes a multimodal subgraph containing two endpoint nodes
and their local neighborhood, and outputs a multimodal graph indicating the link’s existence or properties,
i.e., optimizing the objective P(Giink | Gu,w))s Where Gy w) = Vw,w)s E(uw)s F(u,w) Mu,w)) is @ subgraph
with nodes u,w € V and their neighborhood, and Giink = ({v},0, {F(m)}, {m}) is an output graph where
v’s feature F, (v) encodes link existence or type.

e Multimodal graph classification (GC) takes the entire multimodal graph as input and generates
a multimodal graph representing the graph’s overall class or category, i.e., optimizing the objective
P(Gelass | G), where G = (V, &, F, M) is the input graph and Gelass = ({v}, 0, {Fn}, {m}) is an output
graph where v’s feature J,,,(v) describes the predicted class.

e Multimodal graph question answering (GQA) aims to generate an answer based on a multi-
modal graph G and a text-attributed query node vq, i.e., optimizing the objective P(Ganswer | Gq), where
Gg = VU {vg},EU&EQ, X U{Fiext(vg)}, M U {text}) is the graph augmented with vg and potential
edges £g and Ganswer 1s the generated answer graph (e.g., a text/image node or a subgraph).

e Multimodal graph reasoning (GR) extends GQA with complex multi-hop reasoning. The gen-
erated output Greasoning Mmay embody complex logical structures or a chain of thought, i.e., optimizing
the objective P(Greasoning | Gq), where Gq includes the graph and query, and Greasoning €ncapsulates the
reasoning result, which could be the thinking process like chain-of-thoughts or graph-of-thoughts.

e Multimodal graph text generation (TG) utilizes multimodal graph information to generate
coherent text sequences, i.e., optimizing the objective P(Giext|G), where Gioxt is the generated text, such
as a summary of a group of papers cited by each other or a new git patch based on correlated git commits.

e Multimodal graph image generation (IG) aims to generate novel images, where a multimodal
graph with textual descriptions, structured data, or other modal inputs can serve as a basis, i.e., optimiz-
ing the objective P(Gimage|G), where P(Gimage) is the generated image, such as a descriptive image of the
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Figure 3 (Color online) Concrete working example of generative modeling across different tasks.

food chain based on a multimodal graph of ecosystems or a novel-style painting based on a multimodal
graph of artist networks.

We provide concrete applications for the aforementioned tasks under a generative perspective, as
illustrated in Figure 3. Further details on the datasets for these tasks are available in Section 4.

Remark 3 (Multi-scale characteristics). This generative paradigm offers a powerful and flexible frame-
work for modeling diverse multimodal graph tasks with a unified interface. Since multimodal graphs in-
herently represent multi-granular information, ranging from unimodal instances and bi-modal instances
to entire multimodal datasets, the resulting input and output spaces are exceptionally versatile, ac-
commodating a wide array of tasks. This versatility, however, introduces multi-scale characteristics for
multimodal graph tasks: the input and output graphs can differ significantly in scope. For example,
a task might take an entire graph as input but require only a single node or path as output (as in a
GQA task), or vice versa for other potential tasks. This disparity in scales and granularity poses critical
challenges for unified task modeling and task prompt design in MG-LLM, as the scales and semantic
levels of inputs and outputs can vary widely.

2.3 Unified view of multimodal graph models

In this section, we provide a unified view on current multimodal graph models by first proposing a
transformation function. Then, we bring together the two main categories that are moving towards
MG-LLM, and we will briefly overview these approaches.

Transformation function. We first propose a transformation function, denoted as 7, which maps
one multimodal graph to another. This transformation often involves a reduction in the number of
modalities and the size of the graph, thereby facilitating processing by models or aligning the output with
desired modalities and formats. This transformation function 7 can be parameter-free (e.g., designed via
heuristic rules) or parametric (learned using neural networks), i.e., Ty with the parameters ¢, which we
omit for brevity.

For instance, in the input space, 7 can convert an entire multimodal graph into text. This could involve
image captioning for image features, speech-to-text conversion for audio features, and textualizing edges
into XML-like languages for structures. Consequently, a complex multimodal graph is transformed into
a simplified multimodal graph where nodes primarily possess text attributes. Formally, given an input
multimodal graph G, the transformation 7 could yield G’ = (V', &', F', {text}), where F’ is the text
feature mapping function.
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Similarly, in the output space, 7 can summarize a multimodal graph into a single label, a document,
or an image. An image output, for example, might not solely originate from extracting a single image-
attributed node but could also involve rendering an entire multimodal graph into a coherent visual
representation (e.g., visualizing a family tree).

In this view, a multimodal graph model can be seen as first transforming the input multimodal graph
via a transformation, then modeling it, and finally transforming it again into the desired output. This
can be formally expressed as

gout - %ut(d)ﬁ (ﬁnt(gin)))v (2)

where Gj, is the input multimodal graph, 7, is the input transformation, ¢g¢ is the core multimodal
graph model, 7oy is the final transformation, and Gy, is the generated output multimodal graph. This
generalized framework highlights the crucial role of these transformations in aligning diverse multimodal
graph data with the model’s capabilities and desired output formats.

Multimodal graph neural networks. The transformation function 7 is typically considered a
parametric function. Here, information from each modality is initially mapped into a learned represen-
tation via trained modality-specific encoders. Subsequently, a graph neural network (GNN) leverages
its message-passing mechanism to learn from these representations and derive the required labels for
downstream tasks. For instance, multimodal graph convolution networks (MGCNs) [14-16] utilize the
learned multimodal representation to form an adjacency matrix, and multimodal graph attention net-
works (MGATS) fuse information from different modalities by assigning different attention weights to
each node [17-19]. The primary advantage of these approaches lies in the MGNN’s ability to explicitly
utilize structural information within the graph. However, a significant drawback is the lack of flexible
input and output spaces, which complicates the development of unified foundation models for multi-
modal graphs. Furthermore, this late fusion function can lead to substantial information loss, making it
challenging to capture fine-grained modal interactions.

Graph large language models. GraphLLMs often employ different strategies for the transformation
function 7. (1) Some studies utilize a non-parametric transformation function. For instance, they might
describe the entire graph as text, which is then processed by an LLM [20-26]. Alternatively, they
might transform the graph into image-text pairs to be processed by a vision-language model (VLM).
The advantage of these methods is their ability to leverage the flexible input and output spaces of
LLMs or VLMs, enabling them to handle a wide range of tasks. However, they are heavily dependent
on the inherent capabilities of the underlying LLM or VLM. Describing a complex graph entirely in
text can lead to very long contexts, making comprehension difficult for the model. Moreover, certain
modal information may be inherently challenging to textualize (e.g., an image converted to text can
suffer significant information loss). (2) Other studies employ a parametric transformation function. For
instance, LLaGA [7] employs a parametric projector to transform graph data into structured sequences,
which are then embedded into the token space and fed into a large language model (LLM) for further
processing. This mapping enables LLMs to effectively handle graph-structured data, enhancing their
versatility, generalizability, and interpretability. GOFA [8] interleaves randomly initialized GNN layers
within a frozen pre-trained LLM, organically combining semantic and structural modeling capabilities.
This design leverages the GNN’s strength in processing graph structures alongside the LLM’s generative
and reasoning abilities. It is important to note that current GraphLLMs rarely address multimodal graph
problems directly.

Remark 4 (Modular characteristics). For building a native MG-LLM, the transformation function 7
might ideally be an identity mapping, i.e., the input multimodal graph is directly fed into the primitive
MG-LLM without any information loss. To achieve this ambitious goal, we might have to pretrain the
model on extremely large multimodal graphs, e.g., the entire internet, so that sufficient pairwise data
across modalities could directly empower the model with comprehensive knowledge of various modalities
and graph structures. However, this monolithic approach might be impractical in the near future due
to the considerable computational expenses and data acquisition challenges. One possible solution to
circumvent this limitation might be building a modular multimodal graph LLM, which integrates var-
ious parameterized modules designed for specific functions to understand as well as generate both the
structures and multimodal information within multimodal graphs. This modularity could allow for more
efficient training and flexible adaptation to diverse multimodal graph tasks. It is important, however, to
distinguish this from a generic Omni-MLLM with a graph plugin, as an ideal modular MG-LLM would
still feature deeply co-designed components.
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3 Towards multimodal graph large language models

In this section, we will delve into the essential characteristics that a multimodal graph large language
model should possess, the core challenges in achieving these characteristics, current relevant approaches,
and potential future research directions. The key characteristics are illustrated in Figure 4.

3.1 Unified space for multimodal structures and attributes

Desired characteristics. MG-LLM is envisioned to effectively process information across diverse do-
mains and a wide range of data modalities [6]. Real-world applications in healthcare, finance, scientific
discovery, and social media often present highly heterogeneous structures and data types [27]. Therefore,
MG-LLM should possess strong domain transferability and the capacity for broad representation general-
ization. A key characteristic of MG-LLM is the ability to align diverse multimodal features and relations
within a truly unified representation space. This requires developing a comprehensive multimodal graph
vocabulary capable of capturing highly irregular, multi-level, and continuous structural and attribute
information. Such a space should facilitate the learning of transferable patterns that generalize across
heterogeneous data domains. The goal is to create a seamless integration where information from text,
images, audio, video, and structured graph topologies can be jointly processed and understood. This
unified space should minimize redundancy while maximizing information retention and the faithful rep-
resentation of relational semantics, enabling robust domain transferability and flexible interpretation of
various data inputs.

Key challenges. One of the fundamental challenges in building MG-LLM is the inherent heterogene-
ity of data domains. Data often originates from various sources with different formats and structures, such
as biomedical data (e.g., proteins, drugs) [28], social networks (e.g., text, images) [29], and multimodal
knowledge graphs (e.g., language, images, temporal data) [30]. These domains exhibit distinct properties,
including categorical, continuous, or structured data types [31]. This heterogeneity poses a significant
obstacle in designing a unified model capable of efficiently integrating and processing such diverse data.
Despite recent efforts to develop foundational models for graph data [32], these approaches remain limited
to a few domains. Models [33,34] still fall short of providing a truly universal multimodal graph encoding
scheme, which hinders generalization to broader and more diverse application scenarios. Furthermore, the
multi-granularity of nodes and structures presents a significant challenge. In multimodal graphs, nodes
represent entities that may belong to different modalities (e.g., images, text, molecules) with various
granularities, while edges capture relationships between these nodes. Effectively modeling these hetero-
geneous nodes and their connections, which often have varying structures, requires novel approaches for
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multimodal embedding and multimodal graph structure learning to better accommodate the complexity
of diverse node types and relations. The highly irregular, multi-level, and potentially continuous nature
of multi-graph vocabularies further complicates the creation of a unified representational space, leading
to potential issues like redundancy and information loss during the integration of multimodal features
and relations.

Relevant literture. Efforts towards achieving domain transferability and generalizable representa-
tions in graph learning have led to the development of foundation models and pre-training strategies
for graph data [32-34]. Specifically for multimodal graphs, research has begun exploring how to learn
domain-invariant representations that can generalize across different knowledge graphs and multimodal
networks [35]. The growing interest in prompt-driven and instruction-based paradigms, largely influenced
by the success of large language models, has also spurred work in adapting these approaches for unified
data processing within structured and multimodal contexts [36-38]. While these studies represent signifi-
cant steps, they often grapple with unifying the vastly different granularities and semantic levels inherent
in multimodal graph data, or they rely on transformation functions that might incur information loss.

Future directions. To achieve a truly unified space for multimodal structures and attributes, several
critical future directions emerge. Firstly, there is a pressing need to develop novel multimodal graph
vocabulary and tokenization schemes that can flexibly represent information ranging from fine-grained
features (e.g., pixels, words) to coarse-grained concepts (e.g., full images, entire documents), as well as
complex graph topologies. This involves moving beyond simple concatenations or late fusion, aiming
for an early and deep integration of multimodal signals. Secondly, research should focus on designing
architectures capable of learning genuinely transferable patterns across the highly irregular, multi-level,
and continuous nature of real-world multimodal graphs. This might involve exploring advanced graph
neural network designs combined with foundation models that can process diverse modalities natively.
Thirdly, strategies to mitigate redundancy and information loss during multimodal feature and relation
integration are crucial. This could involve attention mechanisms that dynamically weigh modality con-
tributions or latent space learning that preserves critical inter-modal dependencies. Finally, developing
benchmark datasets specifically designed to evaluate the effectiveness of models in this unified multimodal
graph space, across diverse domains, will be essential to drive progress in this field. This foundational
work will be instrumental in realizing the vision of native modeling capable of operating directly on rich,
multimodal graph data without substantial information loss.

3.2 Handling diverse multimodal graph tasks

Desired characteristics. A multimodal graph large language model should be adept at handling a
vast array of tasks, moving beyond traditional discriminative objectives to embrace a unified generative
paradigm. As previously outlined, the ability to frame all multimodal graph tasks as multimodal graph
generation is a key characteristic. This necessitates a model capable of treating diverse problems, such as
multimodal node classification, link prediction, graph classification, question answering, reasoning, and
even multimodal content generation (text or image), as transformations from an input multimodal graph
to an output multimodal graph. The model should demonstrate flexibility in its input and output spaces,
seamlessly adapting to tasks that operate on different granularities, from fine-grained node features to
entire graph structures. Furthermore, the model should support prompt-driven or instruction-based
learning, allowing for versatile task adaptation and generalization to new, unseen multimodal graph
scenarios through natural language commands or structured prompts.

Key challenges. A fundamental challenge in developing such models lies in the multi-scale character-
istics of multimodal graph tasks. As highlighted in the generative modeling section, the input and output
graphs can differ significantly in scope and granularity. For instance, a task might take a comprehensive
multimodal graph as input but require only a single predicted node’s attribute as output (as in node
classification or a specific graph question answering task) [39]. Conversely, other tasks might demand the
generation of an entire sub-graph or even a new multimodal graph from a simple input. This disparity
in scales complicates unified task modeling and especially task prompt design, as the semantic levels of
inputs and outputs vary widely [40]. Beyond structural scale, the inherent scales of different modalities
also pose challenges; text inputs can vary greatly in length, images in size, and videos in temporal dura-
tion. Integrating and generating information across these vastly different intrinsic modal scales, alongside
varying graph structural complexities, requires sophisticated mechanisms to prevent information loss or
redundancy and maintain coherence across the entire representation [41].
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Relevant literture. Efforts to address the diversity of graph tasks have led to the development of
multi-task graph foundation models, which aim to provide a single framework for various graph-related
tasks [42-45]. Inspired by the success of large language models, research has also begun to explore
prompt-driven and instruction-based paradigms for graph and multimodal contexts. These approaches
leverage the flexibility of language models to adapt to different downstream tasks by formulating them
as sequence-to-sequence or graph-to-sequence problems [46,47]. Current GraphLLMs or vision-language
models, by virtue of their flexible input and output capabilities, can handle some multimodal graph
tasks by first transforming the graph into a text-centric or image-text paired representation. While these
methods demonstrate promising abilities in task generalization and leveraging pre-trained knowledge,
they often face limitations when directly handling the intricate multi-scale nature and inherent graph
structures, sometimes relying on transformation functions that may incur information loss or struggle
with extremely long or complex contexts.

Future directions. To effectively handle diverse multimodal graph tasks, future research should
prioritize developing novel approaches for unified task modeling that natively account for the varying
scales and granularities of both input and output multimodal graphs. This involves designing architectures
that can process fine-grained features (e.g., pixels, words) alongside coarse-grained concepts (e.g., full
images, entire documents) and complex graph topologies in a seamless manner. Another critical direction
is the investigation of adaptive prompting mechanisms that can dynamically adjust to the task’s specific
scale and the required output granularity, moving beyond generic prompts. Furthermore, attention should
be given to extending generative modeling techniques to truly open-set multimodal graph generation,
where the model can synthesize novel graph structures or content (e.g., images, texts, audios) that
are not limited to predefined sets. This requires a deeper integration of multimodal understanding with
generative capabilities, aiming for models that can operate directly on rich multimodal graph information
without relying on lossy intermediate transformations.

3.3 Multimodal graph in-context learning capability

Desired characteristics. A central aspiration for MG-LLMis to exhibit robust in-context learning (ICL)
capabilities. This involves the model’s ability to solve novel tasks by conditioning on a limited number of
graph-anchored examples provided directly within the prompt, without requiring explicit weight updates
or fine-tuning. Similar to how large language models learn from demonstrations in text, MG-LLM should
infer underlying patterns and generalize to unseen multimodal graph scenarios. This necessitates a model
that can interpret and leverage diverse multimodal features and complex graph structures present in the
few-shot examples to inform its predictions or generations for new queries. Ultimately, achieving this
capability relies on effective generative pretraining on large-scale, paired multimodal graph data, coupled
with an architectural design and self-supervised learning objectives that facilitate flexible transfer and
scaling.

Key challenges. Extending in-context learning to graph-based multimodal contexts presents signif-
icant challenges that are not encountered in plain text domains. Graphs inherently possess a variable
topology, long-range dependencies, and a non-sequential structure [6,48], making it difficult to define what
constitutes an effective context window for ICL. Unlike a linear sequence of tokens, the ‘neighborhood’
or ‘context’ around a graph element can be complex and multifaceted. Furthermore, encoding the rich
relational priors and intricate inter-modal connections compactly for consumption by models, especially
transformer architectures that are often designed for sequential data, remains a non-trivial task. The
diversity of modalities within a graph (e.g., text, images, audio associated with nodes or edges) further
complicates the unified representation and contextual understanding necessary for effective in-context
learning.

Relevant literture. Inspired by the success of large language models in in-context learning [49], re-
searchers have begun exploring methods to imbue this capability into graph-based models. Strategies for
graph ICL often involve linearization strategies, such as converting graphs or subgraphs into sequences
of triples or using template filling to represent graph information in a text-like format [36]. Another
approach involves the use of sampled subgraph prompts, where relevant subgraphs are selected to serve
as examples for the model [50]. Hybrid architectures have also emerged, combining the strengths of
pretrained GNNSs for structural encoding with autoregressive decoders, which are adept at sequence gen-
eration and ICL [51]. Specific methods like AskGNN [50] and retrieval-augmented transformers adapted
for graphs [52] demonstrate that carefully selecting relevant subgraphs and aligning them with language
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tokens can enhance few-shot learning within graph constraints, pointing towards the importance of con-
text retrieval and integration. Progress has also been made in aligning graph information with textual
prompts for language models [53,54].

Future directions. To fully unlock the multimodal graph in-context learning capability, several
critical future directions should be explored. A key area is the development of more sophisticated multi-
modal graph tokenization schemes that can capture the inherent multi-granularity of graph entities (from
fine-grained features to coarse-grained concepts) and their complex inter-modal relations in a way that
is amenable to in-context learning. This would involve designing tokenizers that can flexibly abstract
both structural and attribute information across modalities. Furthermore, research should focus on ar-
chitectures that can intrinsically process irregular graph structures and multimodal information without
significant information loss from linearizing or simplifying the graph. This might involve novel graph-
specific attention mechanisms or prompt-based techniques that can dynamically integrate and reason
over graph-anchored examples. The integration of retrieval mechanisms that can efficiently fetch relevant
subgraphs or multimodal contexts for ICL, especially from vast multimodal knowledge graphs, will also
be crucial. Ultimately, continued advancement in large-scale generative pretraining on diverse and rich
multimodal graph datasets, coupled with self-supervised objectives tailored for graph understanding and
generation, will be essential for models to acquire robust and transferable in-context learning abilities.

3.4 Natural multimodal graph interaction

Desired characteristics. An essential goal of MG-LLMis to enable natural language-based interaction
over structured and multimodal data. Users should be able to query, edit, and reason about graph-
structured knowledge using plain language, without needing to learn formal query languages like SPARQL
or Cypher. This requires the MG-LLM to accurately map natural language inputs to graph traversal
operations, complex reasoning chains, or precise node and edge modifications. Furthermore, the model
should support rich, multi-turn dialogue, allowing for clarification and refinement of user intentions. A
crucial aspect is visual grounding within graphs, enabling the model to align natural language descriptions
with visual elements present within the graph context, thereby facilitating a more intuitive understanding
of multimodal information. Beyond querying, the model should also be capable of graph-based summa-
rization and generation of new graph structures or content in response to natural language commands.
Ultimately, the desired characteristic is to provide a seamless, intuitive, and highly interactive interface
between human users and complex multimodal graph data, allowing for direct understanding, editing,
reasoning, and generation of information, bridging the gap from unstructured human input to structured
graph knowledge, while aligning with human values and intentions.

Key challenges. One of the fundamental challenges in achieving natural multimodal graph interac-
tion lies in the inherent semantic gap between the ambiguity and flexibility of natural language and the
precise, structured nature of graph data. Natural language expressions can be vague or underspecified,
making it difficult for a model to infer the user’s exact intention for graph operations, especially when
dealing with heterogeneous multimodal features [5]. Mapping these vague intentions to concrete graph
traversals, edits, or reasoning chains is non-trivial. Furthermore, supporting multimodal interactions
introduces complexities, as the model must seamlessly interpret queries that might refer to text, image,
audio, or video attributes within the graph, and potentially generate responses in a desired modality [55].
The ability to understand, edit, reason, and generate content within a multimodal graph poses distinct
challenges; for instance, editing an image-attributed node based on a textual command requires sophis-
ticated cross-modal understanding and generative capabilities [56]. Ensuring consistency and avoiding
unintended side effects during graph modifications initiated by natural language commands is another
significant hurdle. Finally, scaling such interactive capabilities to complex, real-world multimodal graphs,
such as those representing industry traffic patterns, molecular structures, or visual relational graphs,
presents significant challenges in terms of computational efficiency and maintaining accuracy across di-
verse domains [57].

Relevant literture. Recent advancements in natural language interfaces for structured data have
laid the foundational groundwork for multimodal graph interaction. Efforts in conversational knowledge
graphs [58,59] have explored how to enable multi-turn dialogue over knowledge bases, allowing users
to progressively refine their queries. Similarly, research on natural language interfaces for databases
(NLIDB) [60] focuses on translating natural language questions into structured query languages, a pre-
cursor to graph traversal and modification. With the rise of multimodal large language models, there
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has been increasing interest in visual grounding, where models align language descriptions with visual
elements in complex scenes or contexts [61-63]. These techniques are directly relevant for grounding
natural language queries within image or video attributed graph nodes. Graph-based generative tasks,
such as graph summarization [53,64], have also emerged, demonstrating the ability to condense graph
information into coherent text. Moreover, the integration of instruction-tuned language models with
symbolic reasoning modules [65,66] represents a promising direction for building more robust dialogue-
centric MG-LLM, enabling them to leverage both pattern matching and logical deduction for complex
graph interactions.

Future directions. To fully realize natural multimodal graph interaction, several critical future
directions need exploration. Firstly, developing more sophisticated methods for disambiguating vague
or underspecified natural language intentions and aligning them precisely with multimodal graph struc-
tures and attributes is crucial. This could involve interactive clarification dialogues where the model
asks follow-up questions to refine its understanding. Secondly, research should focus on robust mech-
anisms for human feedback integration during the interaction process, allowing users to correct model
interpretations or outputs, thereby continually improving the model’s understanding and alignment with
human values. This iterative feedback loop is essential for adapting models to new domains and user
preferences. Thirdly, advancing generative capabilities to enable not only querying but also complex
graph editing and generation through natural language commands is vital. This includes the ability to
modify existing multimodal nodes and edges, add new entities, or even generate entire subgraphs based
on high-level instructions, with applications in areas like molecular design or urban planning. Finally,
scaling these interaction paradigms to dynamic and evolving multimodal graphs that represent real-world
phenomena (e.g., real-time industry traffic, evolving scientific knowledge graphs) will require innovations
in efficient graph indexing, retrieval, and incremental updates to maintain responsiveness and accuracy
during natural language-driven interactions.

3.5 Multimodal graph reasoning

Desired characteristics. An MG-LLM should be capable of multi-hop, cross-modal reasoning. For
example, the model should answer a complex query by combining clues from text and images through
multiple inferential hops. Recent benchmarks like MultiModalQA [67] show that solving such cross-
modal multi-hop questions remains challenging. Models must jointly reason over different modalities and
knowledge sources to succeed on these tasks. Another desired capability is analogical inference across
modalities, where the model draws structural comparisons between, for instance, an image pair and a
text pair. Analogical reasoning is a fundamental aspect of human cognition. Initial studies suggest large
models have some analogical ability. However, most prior work on analogies is single-modal. Multimodal
analogical reasoning is still in its early stages. Early efforts on multimodal analogies over knowledge
graphs (e.g., the MARS benchmark [68]) illustrate both the potential and the difficulty of this skill. For
instance, demonstrate that even advanced multimodal LLMs struggle with visual analogies unless special
prompting or training is provided. This result underscores the importance of analogical inference as a
future MG-LLM capability [69].

Key challenges. Building a MG-LLM poses several major challenges. First, modality alignment is
difficult. The model must align and fuse information from heterogeneous sources such as images, text,
and graphs into a coherent representation. Without explicit alignment mechanisms, an image’s contents
may not correctly map to textual concepts, impeding reasoning. Techniques like contrastive image-text
pre-training (e.g., CLIP) are often used to partially address this problem by embedding modalities in
a shared space [70]. Recent MG-LLM approaches include dedicated alignment modules for vision and
language. For example, MR-MKG [55] employs a cross-modal alignment module to optimize image and
text correspondences within a multimodal knowledge graph. Second, factual consistency remains a critical
issue. Multimodal LLMs are prone to hallucination and may produce inconsistent answers that conflict
with factual knowledge. This problem worsens when the model must recall external knowledge, such as
from a graph that it was not pre-trained on. Recent work has highlighted these hallucination problems
and proposed evaluation benchmarks (e.g., MHaluBench [71]) and detection frameworks to reduce them.
Indeed, MR-MKG was motivated by the observation that vanilla LLMs often fabricate details about
images due to missing visual knowledge and injects a multimodal knowledge graph to ground the model
in reality [55]. A third challenge is the fragility of current processing pipelines. Many models operate in
stages or rely on external tools, and errors in early steps can cascade. Ref. [72] noted that fixed sub-models
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in current systems make them unable to recover from intermediate mistakes. Improving robustness and
feedback mechanisms is therefore an important challenge.

Relevant literture. Several initial approaches to MG-LLM have been proposed to address these
challenges. A common strategy is to integrate a knowledge graph (KG) or graph neural network into
the multimodal pipeline to better handle structured, relational information. For example, MR-MKG [55]
augments a vision-language model with a multimodal knowledge graph that contains nodes and relations
spanning text and images. It uses a relation-aware graph neural network to encode the MMKG and
injects these representations into the LLM to improve reasoning. Another line of work focuses on graph
construction and alignment between modalities. MAIL [61] constructs a scene graph from image objects
and a concept graph from external knowledge, aligning them via shared entities and fusing them through a
pseudo-siamese graph neural network. This enables reasoning over a combined multimodal graph and has
shown strong results in knowledge-intensive visual QA. Beyond QA, graph-enhanced multimodal models
have been applied to other domains. For example, Choi et al. [73] proposed a model for healthcare
that injects patient-specific graphs into an LLM and uses GNN-based message passing to align clinical
text, lab results, and images. These methods highlight the benefit of structured reasoning but also reveal
engineering complexity, as each task may require tailored graph construction and alignment strategies [74].

Future directions. Future research on multimodal graph reasoning should tackle several ambitious
goals. First, novel graph representation strategies tailored explicitly for multimodal contexts could be
developed, going beyond current embedding approaches to represent complex interactions between modal-
ities more intuitively. Second, dynamically constructed multimodal graphs that adapt in real-time to the
context or queries presented to the model may enhance reasoning efficiency and accuracy. Addition-
ally, exploring scalable inference techniques specifically designed for large and dense multimodal graphs
is essential to overcoming the context-length limitations of current models. Finally, there is a signifi-
cant opportunity to advance explainability by designing methods that produce interpretable reasoning
paths within multimodal graph structures, enabling users to better understand and trust the model’s
decision-making process.

3.6 Discussion on scalability and computational efficiency

Computational efficiency. Compared with unimodal LLMs, MG-LLMs face significantly higher com-
putational demands due to the need to jointly encode complex graph structures and diverse multimodal
signals. Large-scale pretraining introduces massive parameter counts and memory usage, making naive
extensions of existing LLM or GNN architectures impractical [75,76]. To improve efficiency, several
strategies can be adopted: (1) parameter sharing across modalities to reduce redundancy (as explored in
unified multi-domain models [75]), (2) modular architectures that enable different sub-modules to special-
ize on particular modalities or functions (e.g., separate expert components for each modality [77]), and
(3) sparse or sampled attention mechanisms to focus computation on the most relevant subgraphs and
modalities [76,78]. For inference, pruning redundant tokens and layers (using efficient transformer tech-
niques [78]), designing lightweight multimodal graph tokenizers, and incorporating retrieval-augmented
mechanisms [52] are promising directions to lower latency without sacrificing accuracy.

Scalability. Real-world multimodal graphs often involve millions of nodes and edges, coupled with
highly heterogeneous modalities and relations. Scaling MG-LLMs to such large graphs requires both al-
gorithmic and system-level innovations. On the algorithmic side, graph sampling methods (e.g., neighbor
sampling [79] and subgraph sampling [80]) and hierarchical modeling (e.g., differentiable graph pool-
ing [81]) can make training and inference feasible on large datasets by reducing the effective graph size
per batch. On the system side, distributed training pipelines and memory-efficient representations (e.g.,
sparse adjacency matrices or quantized features) are indispensable to handle billion-scale graphs. Frame-
works like DistDGL [82] demonstrate hybrid CPU-GPU training to scale GNNs to extremely large graphs.
Furthermore, scalability must also account for modality and task diversity: MG-LLMs should adapt to
varying input granularities and output structures while maintaining consistent generalization. Progres-
sive scaling strategies and curriculum learning techniques [83] may help stabilize training as the model
gradually expands to increasingly large and diverse multimodal graph corpora.

Deployment strategies. Even if an MG-LLM can be trained successfully, deployment in real-world
scenarios poses additional constraints. Many applications (such as biomedical analysis or recommenda-
tion) impose strict latency requirements and often operate under hardware limitations. To make de-
ployment feasible, model compression and distillation can reduce MG-LLMs into lighter domain-specific
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variants that retain core capabilities. For example, knowledge distillation transfers knowledge from a
large teacher model to a smaller student model [84], and has been effective in compressing deep models
without major performance loss. Quantization and pruning techniques can further improve inference
speed and memory footprint (e.g., 8-bit quantization and weight pruning as in deep compression [85]),
enabling deployment on resource-limited edge devices. Domain-adapted MG-LLMs (for example, a vari-
ant specialized for molecular graphs in chemistry [86] or for urban spatial graphs in planning) are another
strategy to balance generality and efficiency by focusing on a narrower range of modalities/tasks. Finally,
hybrid deployment pipelines can be employed, where heavy multimodal graph computations are offloaded
to powerful servers (cloud) while lightweight modules run on clients (edge devices). Such split-computing
approaches (akin to the Neurosurgeon framework for splitting DNN workloads [87]) achieve a practi-
cal compromise between responsiveness and accuracy, ensuring that MG-LLM-based solutions can meet
real-time constraints in production environments.

4 Multimodal graph datasets

Recent years have witnessed the emergence of multimodal graph learning datasets, which enrich tradi-
tional graph structures by incorporating image, text, video, audio, and multi-omics data. These datasets
facilitate more challenging and realistic graph learning tasks by providing heterogeneous node and edge
attributes. In this review, we categorize representative benchmarks by task type and summarize their
scale, modalities and domains. Statistics can be summarized in Table 1. The datasets can also be grouped
based on the origin of their domains, reflecting the types of real-world data they are derived from. Social
network-related datasets originate from user interactions such as e-commerce activities, book recommen-
dations, online articles, and urban information, which capture patterns of social behavior and digital
connectivity. Knowledge graph datasets stem from structured repositories of knowledge, including multi-
modal knowledge bases, artistic relationships, biomedical repositories, and recipe step data, emphasizing
their foundation in curated domain-specific resources. Scene graph datasets, on the other hand, originate
from visual scenes where objects and their relationships are explicitly annotated, making them distinct
in their focus on spatial and semantic structure within images, and are mainly used for visual graph
question answering tasks. Such a categorization is summarized in Table 2.

4.1 Node classification

Node classification benchmarks evaluate a model’s ability to predict node labels when each node car-
ries multimodal attributes. ELE Fashion [10] is a medium-scale e-commerce product graph comprising
approximately 97800 product nodes, each being annotated with a product title and a high-resolution
image. Books NC [10] includes roughly 685300 book nodes, each with cover images and descriptions, and
is annotated for ten book categories. G2MF-Urban [88] is an urban planning graph with about 100000
street nodes and 2000000 edges, where nodes incorporate overhead imagery and point of interest (POI)
text for functional zone classification. In the biomedical domain, the Pan-Cancer Atlas [89] comprises
approximately 11286 tumor samples across 33 cancer types, profiled by multiple omics assays (mRNA,
miRNA, DNA methylation, proteomics, CNV), and is used for pan-cancer molecular subtype classifica-
tion; each sample is modeled as a node whose features are the concatenated multimodal measurements,
with edges encoding biological relations. Similarly, TCGA-BRCA [90] contains around 1084 breast tumor
samples assayed on six platforms (genomic, epigenomic, transcriptomic, proteomic) and supports breast
cancer subtype classification, also modeling each sample as a node with concatenated multimodal mea-
surements and edges encoding biological relations. Additionally, the OMG-NAS framework [27] evaluates
two real-world out-of-distribution benchmarks: the Tencent graph from WeChat official accounts, which
includes 8000 article nodes and 60000 user-view edges, with each node carrying head images and titles;
and the Amazon review graph, featuring 100000 review nodes and 300000 co-review edges, combining
product images and textual feedback.

4.2 Link prediction

Link prediction datasets require inferring missing or future edges in graphs with multimodal node features.
Books LP [10] comprises approximately 636500 book nodes, each with cover images and descriptions, used
for link inference. The Sports CoPurchase and Cloth CoPurchase datasets [10] are co-purchase graphs
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graph classification; GQA: graph question answering; GR: graph reasoning; TG: text generation; IG: image generation.

Task Dataset Modalities Scale Domain
ELE Fashion [10] Text+Vision 98k nodes, 20k edges E-commerce products
Books NC [10] Text+Vision 684k nodes, TM edges Book recommendation
G2MF-Urban [88] Text+ Vision 100k nodes, 2M edges Urban planning
NC Pan-Cancer Atlas [89] Multi-omics 11k samples from 33 cancer types Biomedical repository
TCGA-BRCA [90] Multi-omics 1084 breast tumor samples Biomedical repository
OMG-NAS Tencent [27] Text+Vision 8k nodes, 60k edges Website articles
OMG-NAS Amazon [27] Text+Vision 100k nodes, 300k edges E-commerce products
Books LP [10] Text+Vision 64k nodes, 3437k edges Book recommendation
Sports CoPurchase [10] Text+Vision 50k nodes, 25k edges E-commerce products
LP Cloth CoPurchase [10] Text+Vision 126k nodes, 951k edges E-commerce products
HyperGCL-Ecomm [91] Text+Vision 1M edges, 500M edges E-commerce products
VTKG-1&C [92] Text+ Vision 130 entities, 842 triples Multimodal KGs
TIVA-KG [93] Text+Vision+Audio 50k entities, 200k triples Multimodal KGs
Gc OMG-NAS Recipe [27] Text+ Vision 20k nodes, 160k edges Food recipes
Large-RG [17] Text+ Vision 500k nodes Food recipes
GQA [12] Text+Vision 113k images, 23M questions Scene graphs
GQA CLEVR [94] Text+Vision 100k images, 1M questions Scene graphs
SceneGraph-VQA [95] Text+Vision 50k images Scene graphs
MARS&MarKG [68] Text+ Vision 34k triples, 13k questions Multimodal KGs
GR FB-ING-TXT [96] Text+ Vision 6k entities Multimodal KGs
WNO-ING-TXT [96] Text+Vision 12k entities Multimodal KGs
VRF [97] Text+ Vision 200 recipes, 89 actions Food recipes
TG MS Recipe Corpus [98] Text+Vision 4k dishes, 150k recipes Food recipes
Richpedia [11] Text+ Vision 3M entities Multimodal KGs
ART500K [99] Text+ Vision 311k nodes, 643M edges Artwork relationships
1G Amazon Coview [100] Text+Vision 178k nodes, 3M edges E-commerce products
Goodreads [100] Text+Vision 93k nodes, 637k edges Book recommendation

Table 2 Datasets categorized by their origin, domain, and examples.

Origin Domain Datasets

ELE Fashion [10], OMG-NAS Amazon [27], Sports CoPurchase [10],
Cloth CoPurchase [10], HyperGCL-Ecomm [91], Amazon Coview [100]
Books NC [10], Books LP [10], Goodreads [100]

OMG-NAS Tencent [27]

G2MF-Urban [88]

E-commerce products

Social network Book recommendation
‘Website articles

Urban planning

VTKG-1&C [92], TIVA-KG [93], MARS&MarKG [68], FB-ING-TXT [96],
WN9-ING-TXT [96], Richpedia [11]

Multimodal KGs

Knowledge graph

Artwork relationships
Biomedical repository

Food recipes

ART500K [99]
Pan-Cancer Atlas [89], TCGA-BRCA [90]
OMG-NAS Recipe [27], Large-RG [17], VRF [97], MS Recipe Corpus [98]

Scene graph

Scene graphs

GQA [12], CLEVR [94], SceneGraph-VQA [95]

containing 50250 and 125839 product nodes respectively, with each node annotated with product titles
and images. HyperGCL-Ecomm [91] is a hypergraph dataset with 1000000 product nodes possessing
multimodal features and 500000000 behavioral edges. VITKG-I and VTKG-C [92] present two common-
sense knowledge graphs (KGs), each with approximately 130 entities and 842 triples, where entities are
associated with images and text, designed for knowledge graph completion tasks. TIVA KG [93] is a
quad-modal knowledge graph containing roughly 50000 entities and 200000 triples, which combines text,
image, video, and audio modalities for completion tasks.
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4.3 Graph classification

Graph classification datasets learn holistic representations for entire graphs with heterogeneous node and
edge attributes. In the context of the OMG-NAS framework [27], a Recipe graph is utilized, comprised of
approximately 20000 recipe nodes and 160000 ingredient/instruction edges, where images are partitioned
into 16x16 patch nodes and text into word nodes. Separately, the Large-RG dataset [17] models a
culinary graph containing over 500000 recipe nodes linked by ingredient edges, enriched with image and
textual attributes.

4.4 Visual graph QA

Visual reasoning datasets convert images into scene graphs paired with compositional questions to as-
sess structured inference. GQA [12] contains 113018 real-world images, 22.7 million questions, and
scene graphs annotated with functional programs. CLEVR [94] is a synthetic visual question answering
benchmark consisting of 100000 rendered RGB scenes paired with approximately 853000 automatically
generated question-answer pairs. Each scene is accompanied by a detailed scene graph that encodes
object attributes and spatial relations, and every question is mapped to a functional program specifying
the multi-step reasoning required, with the dataset designed to minimize biases and provide exhaustive
annotations. SceneGraph-VQA [95] comprises 50000 scene graphs with QA pairs, combining object-
relationship hierarchies, image regions, and textual questions.

4.5 Graph reasoning

Multimodal graph reasoning datasets integrate heterogeneous information sources to support complex
reasoning tasks. MARS and MarKG [68] serve as benchmark datasets for multimodal analogical reasoning.
MARS contains 10685 training, 1228 validation, and 1415 test instances, where each task instance is a
visual-textual analogical quadruple requiring the prediction of a missing entity. MarKG is a supporting
knowledge graph for MARS, containing 11292 entities and 192 relations, with entities enriched by 76424
images along with textual and visual descriptions. Furthermore, two datasets, WN9-IMG-TXT and FB-
IMG-TXT [96], are widely adopted multimodal knowledge graph benchmarks. WN9-IMG-TXT contains
6555 entities, while FB-IMG-TXT contains 11757 entities. In both datasets, each entity is associated
with three modalities: structural graph information, images, and text.

4.6 Text generation

These datasets evaluate alignment or generation of text conditioned on multimodal workflows. Visual
Recipe Flow [97] annotates 200 recipes with before-and-after image pairs for each action and is grounded
in a recipe-flow graph designed for stepwise text generation. The Microsoft Multimodal Aligned Recipe
Corpus [98] contains approximately 150000 text-video alignments across 4262 dishes, structured with
cross-modal graphs between recipe steps and corresponding video segments for description tasks. Rich-
pedia [11] models a multimodal knowledge base containing over 1000000 entities, where relations exist
between KG textual entities and image entities, among image entities, or between image entities and val-
ues such as pixel information. This dataset is designed to support applications such as semantic search
and text generation.

4.7 Image generation

Image generation utilizing multimodal graphs aims to synthesize visual content by leveraging the inter-
connected textual and visual information inherent in these complex network structures. For example,
ART500K [99] curates an artwork domain with 311288 creations and 643 million interconnections reflect-
ing shared artists or styles, each accompanied by textual and visual information. Amazon Coview [100]
charts an e-commerce product landscape where 178890 items are linked by 3 million connections de-
rived from concurrent Browse patterns, each item possessing textual and visual descriptions. Lastly,
Goodreads [100] forms a book recommendation network of 93475 literary works interconnected by 637210
relationships that highlight their comparability, with each book entry including textual and visual ele-
ments.
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4.8 Summary

In summary, these datasets could be useful for evaluating multimodal graph-learning methods across
diverse tasks, scales, and fusion mechanisms, thereby laying a groundwork for MG-LLM. Despite this
progress, the current volume of multimodal graph datasets remains significantly smaller than that used
for pre-training large language models. This disparity highlights the urgent need for the community to
develop more effective methods for data collection and utilization. Furthermore, many existing multi-
modal graph tasks are discriminative, and future efforts might be devoted to more generative multimodal
graph tasks to advance the evaluation and design of MG-LLM.

5 Related work

5.1 Graph representation learning

GNNs such as the graph convolutional network (GCN) [101], graph attention network (GAT) [102], and
graph isomorphism network (GIN) [103] have become foundational for learning representations on graph-
structured data. These models aggregate information over node neighborhoods to enable tasks like node
classification and link prediction. However, recent surveys note several persistent challenges: scaling
GNNs to massive graphs [104], ensuring robustness to adversarial or noisy inputs [105], and integrating
multimodal data into graph models [5] remain open problems. To address graph-specific modeling in a
more general framework, recent work has begun to incorporate LLMs into graph learning. For example,
LLaGA [7] reformulates graphs as token sequences for an LLM, GOFA [8] interleaves GNN layers within a
pretrained LLM, and GraphRAG [106] augments retrieval-augmented generation with knowledge graphs.
These GraphLLM approaches explicitly leverage graph topology in their design. In contrast, general
multimodal LLMs (e.g., GPT-4 [107]) are built for text and image inputs and do not directly encode
graph structure. In this paper, we propose MG-LLM, a novel model that integrates graph structure with
multimodal information modeling to overcome existing limitations in unified representation of multimodal
structures and attributes, handling diverse multimodal graph tasks, enabling in-context learning, and
supporting multimodal graph reasoning.

5.2 Large language models and multimodal large language models

The field of artificial intelligence has been fundamentally reshaped by the advent of LLMs like the GPT
series [49], LLaMA [108], and Qwen [109], built upon the transformer architecture [110] and scaling
principles [49]. This success has expanded the frontier to multimodal large language models (MLLMs)
such as the seminal open-source LLaVA [38], GPT-4V [111], Qwen-VL [112], InternVL [113], and GLM-
4.5V [114]. The trend has further pushed towards Omni-MLLMs that handle arbitrary modalities [9],
with prominent examples including the closed-source model GPT-40 [115] and Gemini 2.5 Pro [116] and
open-source efforts like One-LLM [117] and CoDi-2 [118]. A parallel development is the rise of LLMs
with agentic capabilities for tool use and planning, exemplified by models like Kimi K2 [119] and GLM-
4.5 [120]. Despite these significant advancements, a common limitation persists: current models are
primarily designed for sequential data and lack a native mechanism for reasoning over explicit, complex
relational structures. This highlights a critical gap in handling multimodal graph topology, which our
proposed MG-LLM aims to address.

6 Conclusion

In this paper, we aim to address the generalization limits of current multimodal graph neural networks
by proposing MG-LLM. We introduce a unified framework, highlighting the inherent characteristics
of multimodal graphs, and define five essential capabilities for MG-LLM, ranging from unified data
representation to complex reasoning. By discussing challenges, related research, and future directions,
this work aims to contribute to the multimodal graph community and accelerate the development of
versatile, general-purpose MG-LLM.
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